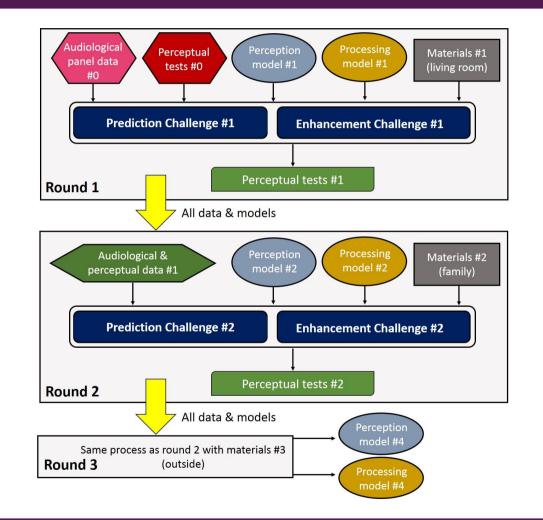


The 1st Clarity Prediction Challenge

Jon Barker, Michael A. Akeroyd, Trevor J. Cox, John F. Culling, Jennifer Firth, Simone Graetzer, Holly Griffiths, Lara Harris, Rhoddy Viveros-Munoz, Graham Naylor, Zuzanna Podwinska, Eszter Porter



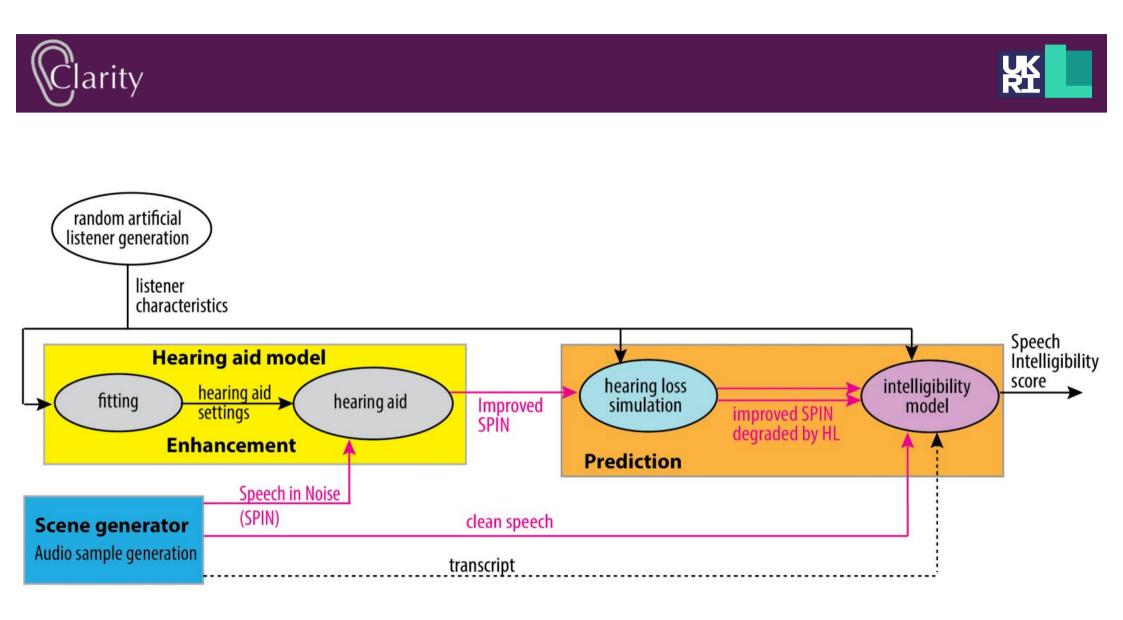
- Two parallel challenges
 Enhancement challenge
 - Hearing aid signal processing

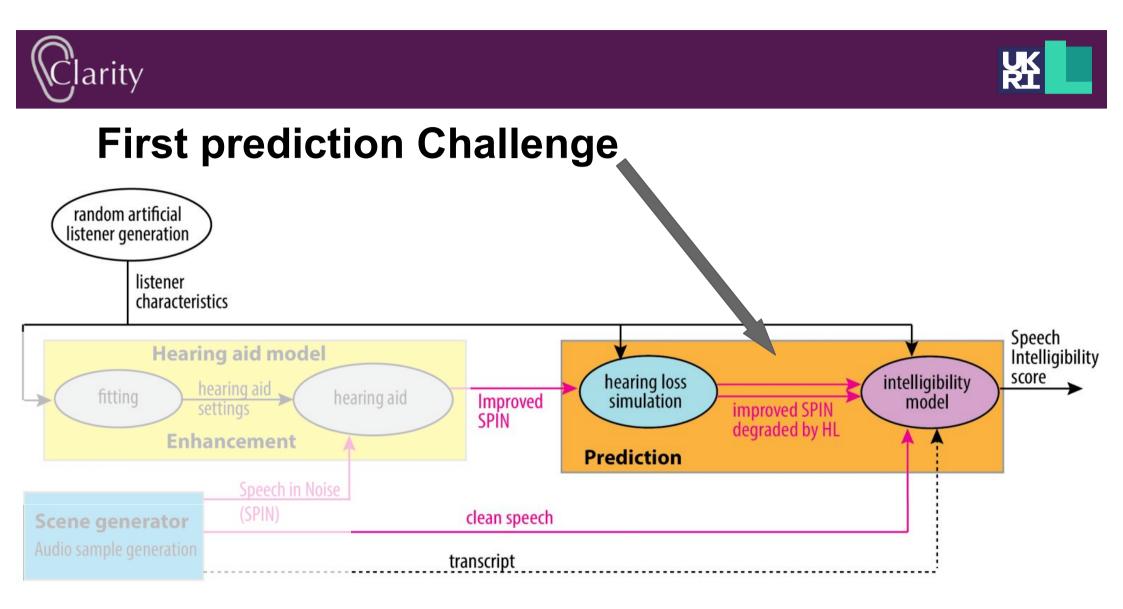
Prediction challenge

- Signal intelligibility prediction
- Three rounds over 5 years
 - Increasingly challenging listening scenarios
 - Each round will build on previous one, *i.e.*, data, tools, baseline
- First round launched Jan. 2021

The Clarity Challenge Plan

Round 1 (2021)


- Simple stationary scenes.
- Domestic living rooms with speech target and either i) a competing static speech source, or ii) a static domestic noise source.


Round 2 (2022)

- Scenes with multiple noise sources
- Listener head movements

Round 3 (2023)

- Fully dynamic scenes.
- Yet to be defined.

Clarity Prediction Challenge

The Challenge Task

Task: to predict a **hearing-impaired listener**'s judgement of the intelligibility of a **speech-in-noise signal** that has been processed by a **hearing-aid algorithm**.

Competitors are given

<processed signal> and <listener id>

And must predict

<intelligibility score>

Intelligibility scores:

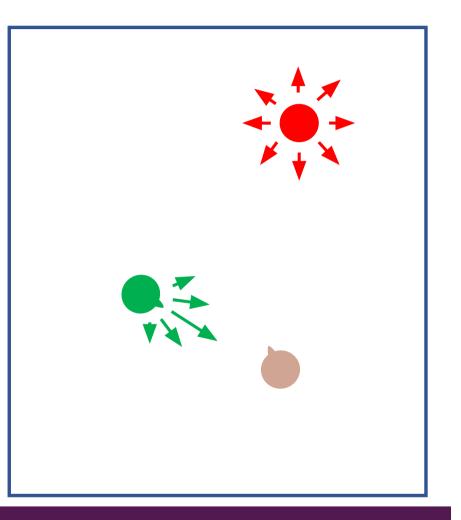
- The signals are short sentences, 7-10 words long
- The per-sentence intelligibility is reported as the number of words in the sentence recognised correctly, expressed as a percentage.

E.g.

Target: She did not return toland again.Response: He did not return to the land.Would score 5 out of 7 correct. (71%)

Clarity Prediction Challenge

The Speech in Noise signals

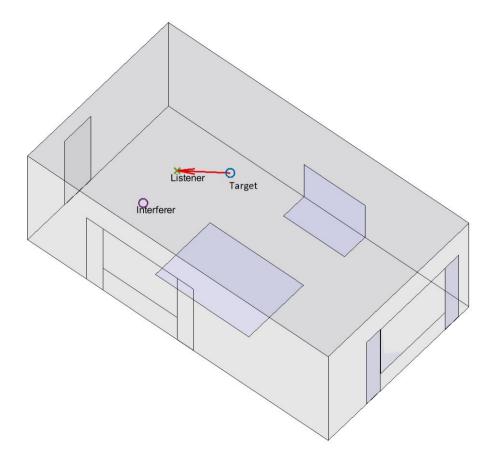

Spatial configuration

Target speech in presence of a single interferer.

Target source is within ±30° inclusive in front of listener at >1 m distance and at same height. It has human speech directivity and is oriented towards the listener.

Interferer anywhere, except within 1 m of a wall and omnidirectional. Domestic noise source kettle, washing machine etc

- 10,000 different sentences selected from the British National Corpus (<u>www.natcorp.ox.ac.uk</u>) of (mainly) written text materials (novels, pamphlets etc., but excluding poetry).
- Screened to contain 7-10 words, all with a word frequency of at least one in the Kucera and Francis database, and hand checked for acceptable grammar and vocabulary by the Clarity project team.
- Recorded (at home, due to Covid-19) by 40 voice actors from a radio production company, reading 250 sentences each.


Graetzer, S., et al. (2022). Dataset of British English speech recordings for psychoacoustics and speech processing research: The clarity speech corpus. Data in Brief, 41(107951), 2711.

Environment

- Room impulse responses from each source to six hearing-aid mics in 10,000 spatial configurations generated by RAVEN.
- The rooms were based on the statistics of British living rooms dimensions and reverberation times (Burgess & Utley, 1985).
- Rooms are all rectangular, but feature variations in surface absorption to represent doors, window, curtains rugs, furniture etc., combined with scattering coefficient of 0.1.

larity Simulated hearing aid inputs

- We use the OIHeaD-HRTF Database (Denk, 2018) to simulate input signals for a 3-mic behind-the-ear hearing aid.
- i.e. The hearing aid algorithms have six channels as input.

F. Denk, S.M.A. Ernst, S.D. Ewert and B. Kollmeier, (2018): Adapting hearing devices to the individual ear acoustics: Database and target response correction functions for various device styles. Trends in Hearing, vol 22, p. 1-19. DOI:10.1177/2331216518779313

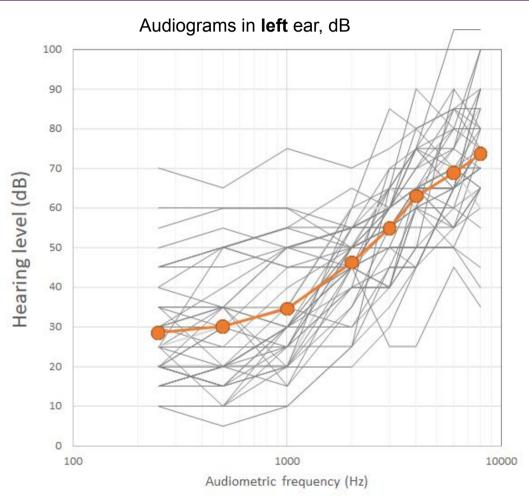
Clarity Prediction Challenge

The hearing aid algorithms

Overview of approaches

Hearing aid algorithms were the entrants of the Clarity Enhancement Challenge (CEC1)

Entrant	Beamforming	DNN Noise Removal	Hearing Loss Compensation	
E001			Baseline	
E003	RLS	Conv-TasNet	Linear, fitting formula	
E005		Binaural Conv-Tasnet		
E007	MVDR	Conv-TasNet	Linear, NN-optimised	
E009		MC Conv-TasNet	Linear, NN-optimised	
E010		U-Net CNN	Linear, fitting formula	
E013	MVDR		Linear, fitting formula but AGC	
E018		2D CNN + LSTM, WPE	Dynamic EQ	
E019	Weighted LCMP		MBDRC	
E021	Weighted LCMP	DNN (Deep MFMBVDR)	MBDRC	


Clarity Prediction Challenge

The listening tests

Listener Characteristics

Hearing Loss

Mean	better ear	= 40 dB
Mean	worse ear	= 47 dB
Mean	better-worse di	fference = 7 dB

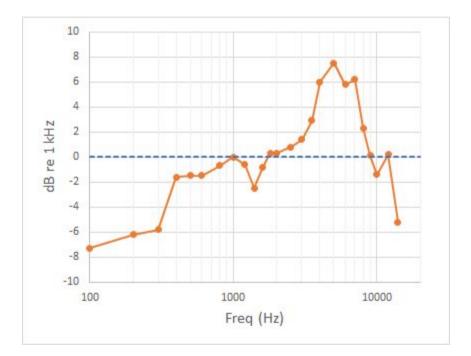
Mean left ear	= 43 dB
Mean right ear	= 43 dB

"Listen@Home"

Lenovo 10e chromebook tablet and Sennheiser PC-8 headphone+mic headset Posted to every participant's home

Headphone measurements - PC8

Levels measured as dB SPL produced by a +/- fullscale sinusoid @ 1 kHz and so is the maximum volume from the headset. (B&K 4192 ¹/₂" mic on a 4153 artificial ear to a 2260 SLM)

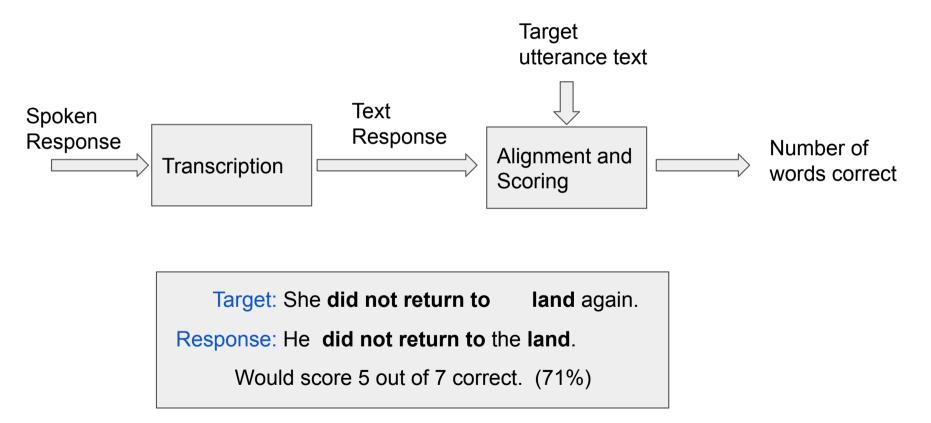

"Reference" set gave 99 dB.

Actual sets (43 of them):

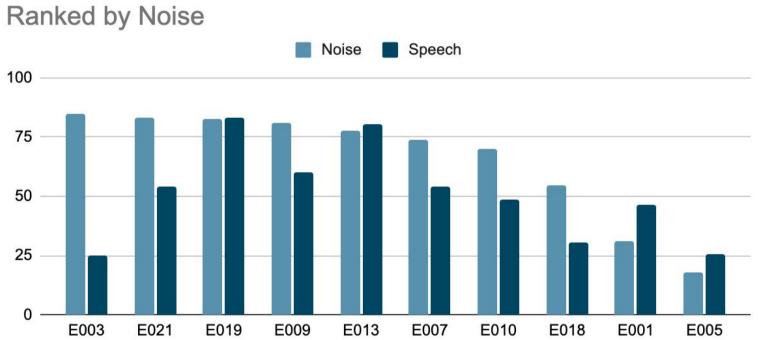
1 @ 94 dB

larity

- 8 @ 96 dB
- 16 @ 97 dB
- 12 @ 98 dB
- 4 @ 99 dB
- 2 @ 100 dB
- ... so some variation across our sample.



Intelligibility Scoring



Tests are scored as percentage of words recognised/identified correctly.

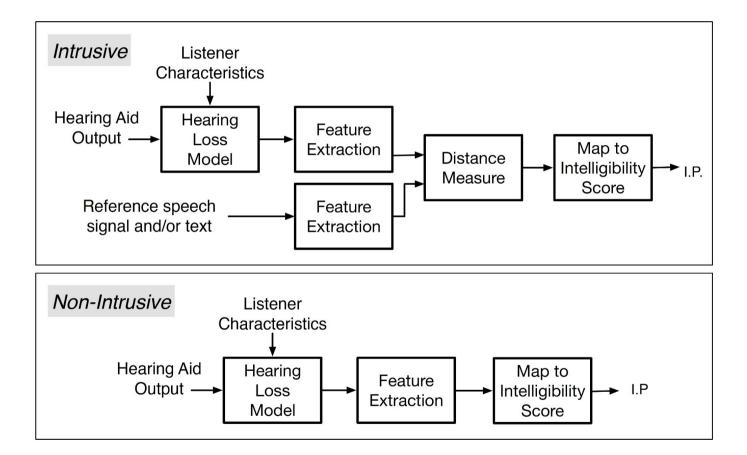
Clarity Prediction Challenge

Challenge Datasets and Rules

Open vs Closed set evaluation

Total of 7233 responses from 27 listeners using 10 systems. Data partitioned in two ways

Track 1 (closed set).

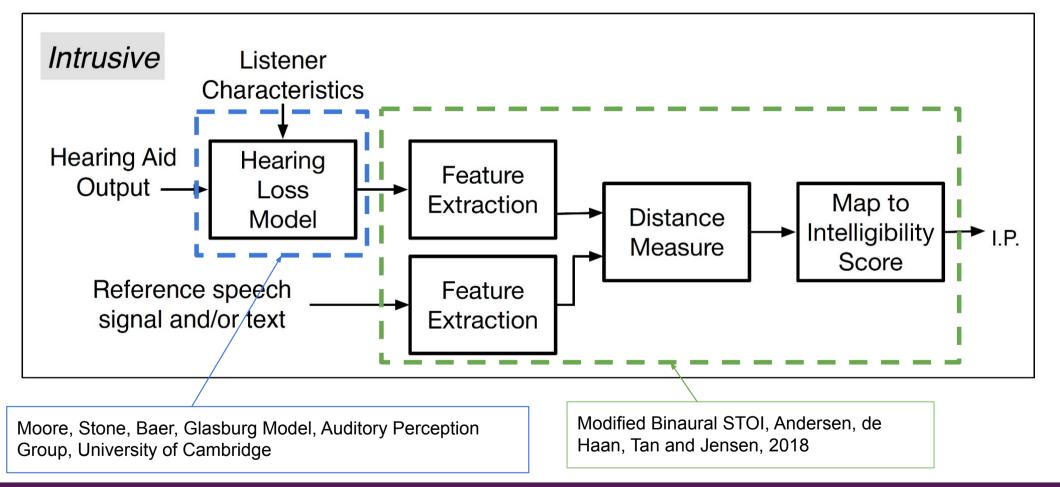

- Same listeners and HA systems in the training set (4812 responses) and test (2421 responses).

Track 2 (open set, i.e. unseen listener or unseen system).

- Train set: 22 listeners and 9 systems (3545 responses),
- Test set:
 - unseen listeners (5 listeners, 432 responses)
 - unseen system (1 system, 249 responses)

Intrusive vs non-intrusive system

KK

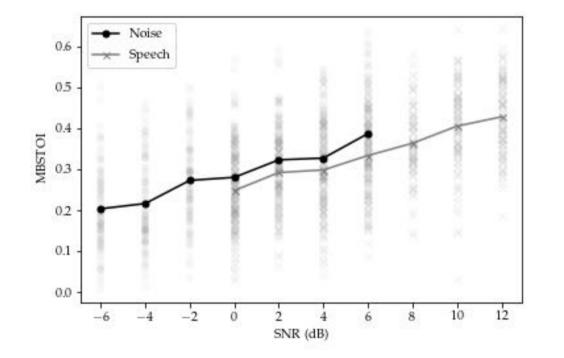


Clarity-2022 Virtual Workshop, 29th June

arity

Baseline prediction system

Clarity-2022 Virtual Workshop, 29th June


arity

MBSTOI by listening condition

For the baseline system

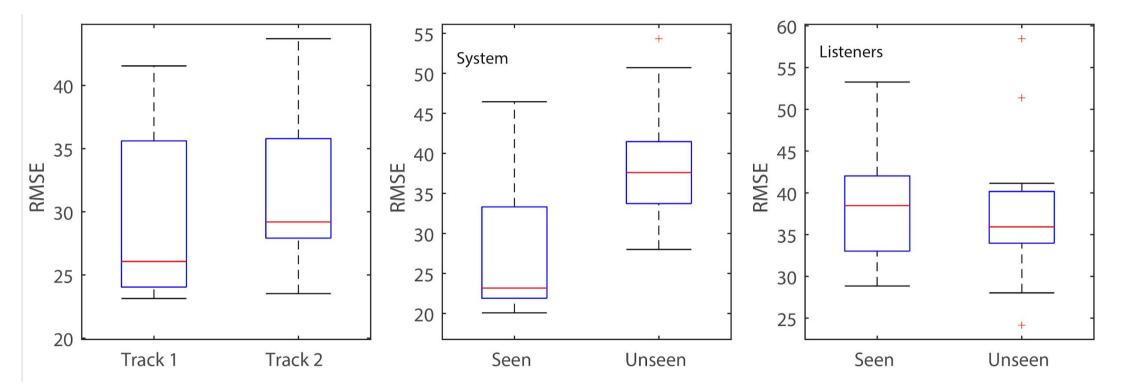
MBSTOI behaving sensibly

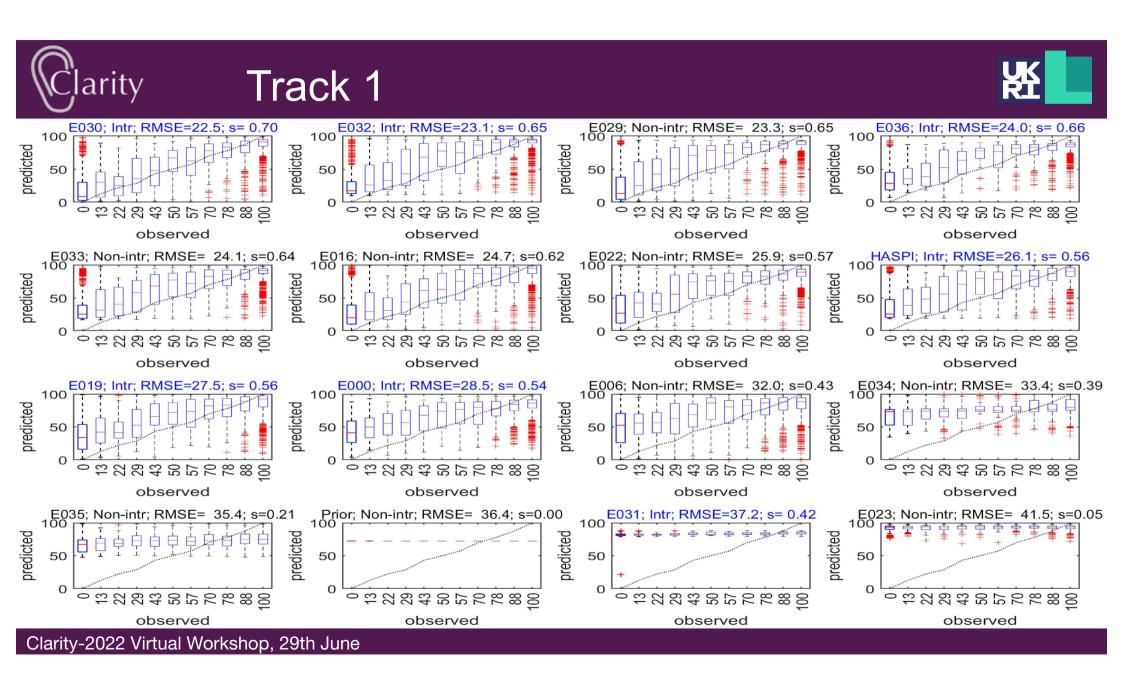
- Increases with SNR
- Decreases as the distance between the target and listener increases
- Decreases as average frequency hearing loss increases

Clarity Prediction Challenge

Entries and Results

- We had **15 system submissions** arising from **9 separate teams**.
- Teams submitted technical papers which were reviewed to check compliance. All submissions complied with the rules.
- Systems were classified as either **Intrusive or Non-intrusive**
- Also included in analysis:
 - Predictions using HASPI
 - A simple algorithm ('prior') that just guessed the mean of the training set intelligibility for every example.





		Track 1 (closed)		Track 2 (open)				
Entrant	Intr.	$RMSE\downarrow$	Corr ↑	$RMSE\downarrow$	Corr↑	1		'
E30 [22]	Yes	$ 22.5 \pm 0.5$	0.79	-	_			
E32 [23]	Yes	23.1 ± 0.5	0.77	$\textbf{23.5} \pm \textbf{0.9}$	0.76	40		į į
E29 [24]	No	23.3 ± 0.5	0.77	24.6 ± 1.0	0.73	40		I
E36 [25]	Yes	24.0 ± 0.5	0.76	29.2 ± 1.2	0.60		l	
E33 [26]	No	24.1 ± 0.5	0.75	28.9 ± 1.1	0.65	35	-	
E16 [26]	No	24.7 ± 0.5	0.74	30.7 ± 1.2	0.59	SE		
E22 [27]	No	25.9 ± 0.5	0.70	32.1 ± 1.2	0.54	RMSE		
E19 [28]	Yes	27.5 ± 0.6	0.66	28.1 ± 1.1	0.63	<u>ش</u> 30	-	
Base. [1]	Yes	28.5 ± 0.6	0.62	36.5 ± 1.4	0.53			
E06 [29]	No	32.0 ± 0.7	0.50	_	_	25	_	
E34 [29]	No	33.4 ± 0.7	0.43	_	_	25		
E35 [30]	No	35.4 ± 0.7	0.25	35.7 ± 1.4	0.22			
Prior	No	36.4 ± 0.7	_	36.2 ± 1.4	-	20		
E31 [31]	Yes	37.2 ± 0.7	0.41	28.3 ± 1.1	0.67		Track 1	Track 2
E23 [32]	No	41.5 ± 0.7	0.07	43.7 ± 1.5	0.05			
E02 [33]	Yes	_	_	35.2 ± 1.4	0.38			
E38 [33]	Yes	-	_	49.7 ± 1.5	0.30			

Observations

- Lots of approaches.
- The best entrant systems had improved performance when compared to:
 - Baseline system
 - Current state-of-the-art metric (HASPI).
- Intrusive (double-ended) and non-intrusive (blind, single-ended) had similar performance.
- Listener characteristics were less useful than expected.
- Even for the best systems, the prediction errors were quite large, equivalent to getting 2 words wrong in a 9 word sentence.
- Look out for special session at Interspeech, September 2022