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Abstract
This report describes an entry to the Clarity Prediction Chal-
lenge 2. Non-intrusive speech intelligibility neural networks are
trained using the challenge data which make use of novel input
feature representations sourced from the intermediate layers of a
pre-trained automatic speech recognition (ASR) system. These
are combined with an exemplar-based model of human mem-
ory to predict human intelligibility ratings. Performance im-
provement over the baseline system on disjoint validation sets
is found, and a challenge entry using the proposed system is
described.
Index Terms: speech recognition, human-computer interac-
tion, computational paralinguistics

1. Introduction
Hearing loss is a widespread problem, affecting approximately
12 million people (1 in 5) in the United Kingdom, though this
problem is only set to grow; by 2035 it is expected to impact
14.2 million people in the UK [1]. Age correlates with a per-
son’s chances of being affected by hearing impairment, and the
population is expected to age. From the year 2015 to 2050,
the proportion of the population aged over 60 is expected to
nearly double, rising from 12% to 22% [2]. As hearing impair-
ment typically worsens in an individual, the intelligibility of the
speech that they hear decreases. Therefore, being able to pre-
dict the intelligibility of a speech source is vital in advancing
assistive hearing technology.
The Clarity Prediction Challenge 2 (CPC2) data consists of
speech signals ŝ[n] and corresponding correctness values i, ob-
tained from listening tests with hearing-impaired listeners. The
signal generation process is shown in Figure 1. The signals ŝ[n]
are the enhanced outputs of hearing aid systems with binaural
input x[n], being an artificially corrupted versions of a clean
reference audio s[n] with additive noise v[n]. The correctness
values i are the percentage of words which the listener was able
to correctly reproduce from the speech signal ŝ[n] they listened
to. The challenge data also contains additional information such
as left/right ear’s representations of the listeners’ hearing loss as
audiograms al and ar , as well as a hearing loss simulation sys-
tem S which can be used to further process ŝ[n] based on the
audiogram information {al,ar} to produce ŝ′[n], an approxi-
mation of how ŝ[n] would sound to a specific hearing impaired
individual. All audio signals are stereo with a left and right
channel.
The data is partitioned into three train sets each paired with a
disjoint evaluation set. Each evaluation set contains listeners
and hearing aid enhancement systems which are unseen in its
corresponding training set, meaning that prediction models will
need to generalise to unseen listeners and systems. Set 1 has

training set of size 8599 and a test set of size 305. Set 2 has
training set of size 8135 and a test set of size 294. Set 3 has
training set of size 7896 and a test set of size 298.
Following findings in [3] where it was found that the use of ŝ′[n]
signals was not useful for the intelligibility prediction task, in
this work we use ŝ[n] only as the input to the proposed systems.
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Figure 1: Signal generation for Clarity Prediction Challenge.

2. System architecture
2.1. Features

The input feature of our model is the outputs of the 12 decoder
layers from a pre-trained Whisper [4] ASR model1, given Ŝ,
a spectrogram representation of ŝ[n] as input. The audio sig-
nal ŝ[n] is downsampled to 16kHz and padded to 30 seconds in
length such that it can be input to Whisper. This spectrogram is
an 80 channel log magnitude Mel Spectrogram with a window
of 25ms and a stride of 10ms.
For each spectrogram Ŝ, the input to the proposed intelligibil-
ity prediction model is thus a representation with dimensions
W × 768× 12 where W is variable depending on the predicted
number of words in the utterance represented by the input spec-
trogram, 768 is the feature dimension of the output of each de-
coder layer and 12 is the number of decoder layers in the pre-
trained Whisper model. The parameters of the Whisper model
are frozen and are not updated during the training of the metric
prediction model described below.

1https://huggingface.co/openai/whisper-small

https://huggingface.co/openai/whisper-small


2.2. Model Structure

A system combination of two models is used, incorporating a
base model and an exemplar-informed model, both shown in
Figure 2. A model structure following work on the Clarity Pre-
diction Challenge 1 (CPC1) in [3] is chosen for the base speech
intelligibility (SI) prediction network, to the lower left in Fig-
ure 2.
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Figure 2: Model architecture.

Its input is the output of each of the 12 decoder layers
from the pre-trained Whisper ASR system, as described above.
A weighted sum of these representations is implemented as a
learnable linear layer with 12 parameters, all initialised to 1, fol-
lowed by a softmax. This representation is then processed by 2
bidirectional long short-term memory (BLSTM) layers with an
input size of 768 and a hidden size of 384. Finally, an attention
pooling feed-forward layer with a sigmoid activation outputs to
a single neuron which represents the base predicted correctness
value i1 normalized between 0 and 1.

An exemplar-informed variation of the model described
above is also trained. It differs from the base model in that
the attention pooling output is fed into an exemplar-informed
module based on a simplified theory of human memory [5].
The exemplar-informed module incorporates a set of labelled
exemplars drawn from the training data. Let y be the output
of the attention pooling for input waveform ŝ[n]. The exem-
plars, ŝ∗1[n], ..., ŝ∗D[n], are processed in the same way as the
input, producing exemplar outputs from the attention pooling
y∗
1 , ...,y

∗
D . Let i∗1, ..., i∗D be the exemplar correctness labels,

scaled to lie between 0 and 1. The output, r, of the exemplar
module is given by

a =

D∑
d=1

f(y) · g(y∗
d)

||f(y)|| ||g(y∗
d)||

i∗d (1)

r = h(a) (2)

The functions f : R768 → R768, g : R768 → R768 and h :
R → R are all learned affine transformations, and r passes
through a sigmoid activation to ensure the output falls between
0 and 1.
The output of the system combination î for a given input signal
ŝ[n] is the mean of the outputs of the base i1 and exemplar-
informed systems i2.

2.3. Training

For each of the three splits, two listeners and two systems were
randomly selected to form a disjoint validation set. All data
with these listeners and systems were removed from the train-
ing set. A randomly selected non-disjoint validation set con-
sisting of 10% of the remaining training data was also formed.
The majority of model selection and hyperparameter tuning was
performed using these validation sets, to test how well they gen-
eralised to unseen listeners and systems. For the final models,
the disjoint validation set and all listeners/systems associated
with it were merged back into the training data to make the best
use of resources.
The base and exemplar-informed models are trained separately
with mean squared error loss. The base system is trained for 25
epochs with batch size 8, learning rate 10−5 and weight decay
10−4. The exemplar-informed system is trained for 50 epochs
with learning rate 2 × 10−6 and weight decay 10−4. During
training and validation, D = 8 exemplars are chosen randomly
from the training data for each minibatch.

3. Results and discussion
Table 1 shows the results for the final models on each of the data
splits.

Table 1: Validation and evaluation set results for the final mod-
els.

Split RMSE
validation evaluation

1 21.6
2 23.4
3 22.7

[insert section following analysis of results]

4. Conclusions
[insert section following analysis of results]
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